Fabrication of high-frequency pMUT arrays on silicon substrates

Thomas Pedersen\(^1\), Tomasz Zawada\(^2\), Karsten Hansen\(^2\), Rasmus Lou-Møller\(^2\), and Erik V. Thomsen\(^1\)

\(^1\) Department of Micro- and Nanotechnology – DTU, Kgs. Lyngby, 2800, Denmark
\(^2\) MEGGITT A/S, Ferroperm Piezoceramics, Hejreskovvej 18Å, Kvistgaard, 3490, Denmark

Key words: pMUT, PZT thick film, high frequency, silicon micromachining

ABSTRACT

A novel technique based on silicon micromachining for fabrication of linear arrays of high-frequency piezoelectric micromachined ultrasound transducers (pMUT) is presented. Piezoelectric elements are formed by deposition of lead zirconia titanate into etched features of a silicon substrate such that the depth of these features determine the element thickness and hence the resonance frequency. The process leaves a near planar surface which is ideal for further wafer level processing such as top electrode and interconnect formation. A fabricated element is characterized by pulse echo response.